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Motivations

A formal attempt around eristic argumentation:
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Motivations

A formal attempt around eristic argumentation:

human disputes (either explicitely or implicitely) relies on rethoric
techniques;

one goal of these techniques, beyond checking the correctness of the
reasoning of the speakers, is to help avoiding revision as long as
possible;

e.g. greek sophists, Socrate, scholastic disputia, Thomas Aquina,
Schopenhauer, modern political disputes...

these techniques :

assume dialogical agents;
aim to represent the mechanisms of a dispute;
aim to achieve reasoning on arguments;

One of our far(!) ideal(!!) goal : simulation of strategies for the
’game’ of argumentation
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Outline

1 X–logics

2 Their use in the context of a dialogical framework

3 Nmatrices, Nsequents

4 Transformation into classical sequents

5 LA, logic of attitudes

6 Links with MSPL (Avron et Al.)

7 Epilog

Aim : attempt for defining a dialogical framework in which two ’agents’
can achieve ’some’ reasoning on their arguments.
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X–logics [Siegel, Forget, 96]

Definition

Classical Inference: K ⊢ f iff K ∪ {f } = K
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X–logics [Siegel, Forget, 96]

Definition

Classical Inference: K ⊢ f iff K ∪ {f } = K

Generalisation : K ⊢X f iff K ∪ {f }∩X = K ∩X

Theorem

K ⊢X f iff K ∪ {f } ∩ X ⊆ K

i .e. (∀x ∈ X )(K ∧ f ⊢ x ⇒ K ⊢ x)

Vocabulary

f is compatible with K regarding X iff K ⊢X f , incompatible otherwise.
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(cumulativity) If X c = X c then ⊢x is cumulative

(classical reasoning) If X = X then ⊢x is ⊢

Example

{a} ⊢{⊥} b and {a,¬b} 0{⊥} b

{b} ⊢{⊥} a ∧ b and {b} ⊢{⊥} ¬(a ∧ b)

{b} 0{⊥,a,¬a} a ∧ b and {b} 0{⊥,a,¬a} ¬(a ∧ b)
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Why X -logics for argumentation?

they correspond to permissive inference relations (Bochman);

as such, they caracterize a broad family of supra-classical relations;

travel among relations via 2L;

the inner structure of X allows to construct different kind of logics,
hence different kinds of agents;

provide parts of the underlying langage with a “logical” status;

also(!): among the different X s, try to get fragments of lower
complexity...
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Agents and attitudes

Definition

An agent is a couple [K ,X ], with K a consistant set of formulas, and
X a set of formulas containing ⊥. The set of all agents is written A.

a formula f is admissible by an agent [K ,X ] iff this formula is
compatible with K regarding X .

Attitudes

f is admissible f is non-admissible

f is admissible

f is non-admissible

Puzzled

Neutral

For

AgainstX f

X f

X f
X f

K

K

K
K
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Answers and arguments

Definition

An answer of the agent Φ = [K ,X ] to a set F is a set A composed
both of formulas of K and of negated formulas of X , and such that F
is incompatible with K regarding X .

An argument α given by the agent [K ,X ] in the presence of a formula
C is a couple 〈S ,¬C 〉 such that S is an answer to C. S and ¬C are
respectively the support and the conclusion of the argument.

Definition

Given α et β two arguments, and {s1, . . . , sn} ⊆ supp(β) :

α attacks β iff concl(α) = ¬(s1 ∧ · · · ∧ sn)

α defends β iff concl(α) = s1 ∧ · · · ∧ sn
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Example: the deafs dialogue

1: “You are rigid, be flexible”
2: “No. YOU are lax, be thorough”

V. Risch (LSIS) Argumentation, NMatrices, X–logics BRA’15 9 / 29



Example: the deafs dialogue

1: “You are rigid, be flexible”
2: “No. YOU are lax, be thorough”

Consider [K1,X1] and [K2,X2] with

K1 = {Flexible ⇒ ¬Lax ,¬Rigid ⇒ Flexible}

X1 = {Rigid}

K2 = {Thorough ⇒ ¬Rigid ,¬Lax ⇒ Thorough}

X2 = {Lax}

V. Risch (LSIS) Argumentation, NMatrices, X–logics BRA’15 9 / 29



Example: the deafs dialogue

1: “You are rigid, be flexible”
2: “No. YOU are lax, be thorough”

Consider [K1,X1] and [K2,X2] with

K1 = {Flexible ⇒ ¬Lax ,¬Rigid ⇒ Flexible}

X1 = {Rigid}

K2 = {Thorough ⇒ ¬Rigid ,¬Lax ⇒ Thorough}

X2 = {Lax}

Answer of 2 to Rigid is A = {¬Lax} ∪ K2 (with K2 6 ⊢{⊥,Lax} Rigid)

V. Risch (LSIS) Argumentation, NMatrices, X–logics BRA’15 9 / 29



Example: the deafs dialogue
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2: “No. YOU are lax, be thorough”

Consider [K1,X1] and [K2,X2] with

K1 = {Flexible ⇒ ¬Lax ,¬Rigid ⇒ Flexible}

X1 = {Rigid}

K2 = {Thorough ⇒ ¬Rigid ,¬Lax ⇒ Thorough}

X2 = {Lax}

Answer of 2 to Rigid is A = {¬Lax} ∪ K2 (with K2 6 ⊢{⊥,Lax} Rigid)

Counter-argument from 2 against Rigid : 〈A,¬Rigid〉, which
deductively amounts to: 〈A,Thorough〉
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Arguments and attitudes

Properties

If [K ,X ] is

against a subset of supp(α), it can construct at least one argument
attacking α;

for a subset of supp(α), it can construct at least one argument
defending α;

puzzled by a subset of supp(α), it can construct at least one
argument both attacking and defending α;

neutral about a subset of the support of supp(α), then it has no
argument to give about α.
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Reasoning about attitudes...

Properties

[K ,X ] is for f iff it is against ¬f ,

[K ,X ] is neutral about f iff it is neutral about ¬f ,

[K ,X ] is puzzled about f iff it is puzzled about ¬f ,

[K ,X ] is for the tautologies,

[K ,X ] is against the contradictions.

If (for instance) [K ,X ] is for f , and for g , which attitude will it be able to
adopt regarding f and g , f or g . . . ?
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Example: combining attitudes

Consider [K ,X ], with

K = {Inflation ⇒ ¬IncreasingPurchasingPower ,

IncreasingSalaries ⇒ IncreasingPurchasingPower ,

FixingBasicPrices ⇒ IncreasinPurchasingPower ,

IncreasingSalaries ∧ FixingBasicPrices ⇒ Inflation}

X = {¬IncreasingSalaries,¬FixingBasicPrices}
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Example: combining attitudes

Consider [K ,X ], with

K = {Inflation ⇒ ¬IncreasingPurchasingPower ,

IncreasingSalaries ⇒ IncreasingPurchasingPower ,

FixingBasicPrices ⇒ IncreasinPurchasingPower ,

IncreasingSalaries ∧ FixingBasicPrices ⇒ Inflation}

X = {¬IncreasingSalaries,¬FixingBasicPrices}

K is both for IncreasingSalaries and for FixingBasicPrices

K is against IncreasingSalaries ∧ FixingBasicPrices
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Valuation

Consider the valuation

v⊢X

4 : A× P −→ FOUR

such that ∀A ∈ A,∀p ∈ P,

v⊢X

4 (A, p) = 1 iff A is for p

v⊢X

4 (A, p) = ⊤ iff A is neutral regarding p

v⊢X

4 (A, p) = ⊥ iff A is puzzled regarding p

v⊢X

4 (A, p) = 0 iff A is against p

v⊢X

4 is not functional... Two choices:
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Valuation

Consider the valuation

v⊢X

4 : A× P −→ FOUR

such that ∀A ∈ A,∀p ∈ P,

v⊢X

4 (A, p) = 1 iff A is for p

v⊢X

4 (A, p) = ⊤ iff A is neutral regarding p

v⊢X

4 (A, p) = ⊥ iff A is puzzled regarding p

v⊢X

4 (A, p) = 0 iff A is against p

v⊢X

4 is not functional... Two choices:

1 adding constraints to X in order to determinize in an unique way the
admissibility associated with the different logical combinations of two
formulas;

2 extending our valuation to sets of truth values
→ non-deterministic multi-valued logics
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Nmatrices [Avron et Al.]

The Nmatrice MLA associated to FOUR is a triple M = 〈V,D,O〉 with
1 V = {O,⊥,⊤, 1}, set of truth values;

2 D = {1,⊤}, set of designated valued,

3 Non-designated values: N = V \ D ;
4 O = {¬,∨,∧}, set of operators whose behaviour is described by the

corresponding truth tables:

α ¬α

1 {0}
⊤ {⊤}
⊥ {⊥}
0 {1}

α ∧ β 1 ⊤ ⊥ 0
1 {1,⊤,⊥, 0} {⊤, 0} {⊥, 0} {0}
⊤ {⊤, 0} {⊤, 0} {0} {0}
⊥ {⊥, 0} {0} {⊥, 0} {0}
0 {0} {0} {0} {0}

α ∨ β 1 ⊤ ⊥ 0
1 {1} {1} {1} {1}
⊤ {1} {1,⊤} {1} {1,⊤}
⊥ {1} {1} {1,⊥} {⊥, 1}
0 {1} {1,⊤} {1,⊥} {1,⊤,⊥, 0}
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Nsequent

Multivalued Sequent

Sequent in a matrix M = set of signed formulas

The classical sequent Γ ⇒ ∆ is interpreted by {0 : Γ} ∪ {1 : ∆} où
V = {0, 1} et D = {1}

Conventions : V = {t0, . . . , tn−1} (with n ≥ 2) and
D = {td , . . . , tn−1} (with d ≥ 1)

Definition

A n–sequent on a language L is an expression Σ of the form
Γ0|Γ1| . . . |Γn−1 where for every 0 ≤ i ≤ n− 1, Γi is a finite set of formulas
on L.

Notation

Replace | by ⇒: Γi1 | . . . Γir ⇒ Γj1 | . . . |Γjs where i1, . . . , ir ∈ N and
j1, . . . , js ∈ D
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Multivalued sequents for LA

Axioms: any set of signed formulas of the form {a : ϕ | a ∈ V, ϕ ∈ F}

Structural rules: weakening

Logical rules (after simplification), e.g.:

Conjonction:

Ω,⊥:ϕ,1:ϕ Ω,⊥:ψ,1:ψ Ω,⊥:ϕ,ψ
Ω,⊥:ϕ∧ψ,0:ϕ∧ψ

Ω,1:ϕ,⊤:ϕ Ω,1:ψ,⊤:ψ Ω,⊤:ϕ,ψ
Ω,0:ϕ∧ψ,⊤:ϕ∧ψ

Ω,⊥:ϕ,ψ,0:ϕ,ψ Ω,0:ϕ,ψ,⊤:ϕ,ψ
Ω,0:ϕ∧ψ
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Transformation into Nsequents

Example:

Conjonction:

Γ⊥,ϕ|Γ0⇒Γ1,ϕ|Γ⊤ Γ⊥,ψ|Γ0⇒Γ1,ψ|Γ⊤ Γ⊥,ϕ,ψ|Γ0⇒Γ1|Γ⊤
Γ⊥,ϕ∧ψ|Γ0,ϕ∧ψ⇒Γ1|Γ⊤

Γ⊥|Γ0⇒Γ1,ϕ|Γ⊤,ϕ Γ⊥|Γ0⇒Γ1,ψ|Γ⊤,ψ Γ⊥|Γ0⇒Γ1|Γ⊤,ϕ,ψ
Γ⊥|Γ0,ϕ∧ψ⇒Γ1|Γ⊤,ϕ∧ψ

Γ⊥,ϕ,ψ|Γ0,ϕ,ψ⇒Γ1|Γ⊤ Γ⊥|Γ0,ϕ,ψ⇒Γ1|Γ⊤,ϕ,ψ
Γ⊥|Γ0,ϕ∧ψ⇒Γ1|Γ⊤
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Expressiveness condition

Condition(Avron, Ben–naim, Konikowska, 07): a n–sequent calculus
can be translated into a two–sided sequent calculus only if the
underlying langage is sufficiently expressive for the semantics induced
by the Nmatrix M

Intuition: for any valuation of an initial formula, by introducing new
formulas compounded only from the initial formula with any
connector, one can still adress any subsequent valuation of these new
formulas either in N or D

This ensures (in a strong combinatoric way) the partition of any
multi-valued sequent into a two-valued sequent
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partition sequence

Σ = Γ1 | Γ2 | . . . | Γn a n–sequent de L.

Definition (Avron, Ben–naim, Konikowska, 07)

A partition sequence for Σ is a tuple π = 〈π1, . . . , πn〉 such that for
1 ≤ i ≤ n, πi is a partition of Γi of the form

πi = {Γ
′

ij | 1 ≤ j ≤ li} ∪ {Γ
′′

ik | 1 ≤ k ≤ mi}
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Nsequents and classical sequents

For a partition sequence π and for all 1 ≤ i ≤ n, define:

∆
′

i =
⋃

{Ai
j(Γ

′

ij) | 1 ≤ j ≤ li}

∆
′′

i =
⋃

{B i
k(Γ

′′

ik) | 1 ≤ k ≤ mi}

Σπ = ∆
′

1,∆
′

2, . . . ,∆
′

n ⇒ ∆
′′

1 ,∆
′′

2 , . . . ,∆
′′

n

where Ai
j(Γ

′

ij) = {Ai
jϕ | ϕ ∈ Γ

′

ij} and B i
k(Γ

′′

ik) is defined in the same way.
Let Π be the set of all partition sequences of Σ, the set of two-sided
sequents generated by TWO(Σ) = {Σπ | π ∈ Π}

Theorem (Avron, Ben–naim, Konikowska, 07)

If L is sufficiently expressive langage for every n-sequent
Σ = Γ1 | Γ2 | . . . | Γn, and any valuation v of formulas of L, v |= Σ iff
v |= Σ′ for every Σ′ ∈ TWO(Σ).
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Preliminary results

Theorem

For every agent A and every formula α:
v⊢X

4 (A, α) = 1 iff v⊢X

4 (A, α) ∈ D and v⊢X

4 (A,¬α) ∈ N

v⊢X

4 (A, α) = ⊤ iff v⊢X

4 (A, α) ∈ D and v⊢X

4 (A,¬α) ∈ D

v⊢X

4 (A, α) = ⊥ iff v⊢X

4 (A, α) ∈ N and v⊢X

4 (A,¬α) ∈ N

v⊢X

4 (A, α) = 0 iff v⊢X

4 (A, α) ∈ N and v⊢X

4 (A,¬α) ∈ D

→ ensures the two-sided partition of every sequent Σ = Γ1 | Γ2 | . . . | Γn
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Calculus SLA

Axioms: ϕ ⇒ ϕ for every formula ϕ

Rules:

Γ⇒∆,ϕ,ψ
Γ⇒∆,ϕ∨ψ

Γ,ϕ,ψ⇒∆
Γ,ϕ∧ψ⇒∆

Γ,¬ϕ,¬ψ⇒∆
Γ,¬(ϕ∨ψ)⇒∆

Γ⇒∆,¬ϕ,¬ψ
Γ⇒∆,¬(ϕ∧ψ)

Γ⇒∆,ϕ
Γ⇒∆,¬¬ϕ

Γ,ϕ⇒∆
Γ,¬¬ϕ⇒∆

SLA gets only one of the two rules for disjonction and only one of the
two rules for conjonction

None of the classical rules for negation

The calculus is symetrical
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MSPL (Avron, Ben–naim, Konikowska, 07)

Given a set S of sources of information and a processor P

each source s ∈ S can tell if a formula φ is true, if it is false or if it
has no information about φ

The processor P collects the formulas and combines them from the
informations given by the sources :

it has information that φ is true but no information that φ is false
it has information that φ is false but no information that φ is true
it has both informations that φ is true and that φ is false
it has no information on φ at all
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MSPL (Avron, Ben–naim, Konikowska, 07)

The Nmatrice MSPL associated to FOUR is M = 〈V,D,O〉 with
1 V = {O,⊥,⊤, 1}, set of truth values;

2 D = {1,⊤}, the designated values,

3 N = V \ D ;
4 O = {¬,∨,∧} the set of operators described by the following

truth-tables:

α ¬α

1 {0}
⊤ {⊤}
⊥ {⊥}
0 {1}

α ∧ β 1 ⊤ ⊥ 0
1 {1,⊤} {⊤} {⊥, 0} {0}
⊤ {⊤} {⊤} {0} {0}
⊥ {⊥, 0} {0} {⊥, 0} {0}
0 {0} {0} {0} {0}

α ∨ β 1 ⊤ ⊥ 0
1 {1} {1} {1} {1}
⊤ {1} {⊤} {1} {⊤}
⊥ {1} {1} {1,⊥} {⊥, 1}
0 {1} {⊤} {1,⊥} {⊤, 0}
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LA vs. MSPL

LA
Γ⇒∆,ϕ,ψ
Γ⇒∆,ϕ∨ψ

Γ,ϕ,ψ⇒∆
Γ,ϕ∧ψ⇒∆

Γ,¬ϕ,¬ψ⇒∆
Γ,¬(ϕ∨ψ)⇒∆

Γ⇒∆,¬ϕ,¬ψ
Γ⇒∆,¬(ϕ∧ψ)

Γ⇒∆,ϕ
Γ⇒∆,¬¬ϕ

Γ,ϕ⇒∆
Γ,¬¬ϕ⇒∆
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LA vs. MSPL

LA
Γ⇒∆,ϕ,ψ
Γ⇒∆,ϕ∨ψ

Γ,ϕ,ψ⇒∆
Γ,ϕ∧ψ⇒∆

Γ,¬ϕ,¬ψ⇒∆
Γ,¬(ϕ∨ψ)⇒∆

Γ⇒∆,¬ϕ,¬ψ
Γ⇒∆,¬(ϕ∧ψ)

Γ⇒∆,ϕ
Γ⇒∆,¬¬ϕ

Γ,ϕ⇒∆
Γ,¬¬ϕ⇒∆

MSPL

= LA + Γ⇒∆¬ϕ Γ⇒∆¬ψ
Γ⇒∆,¬(ϕ∨ψ)

Γ⇒∆ϕ Γ⇒∆ψ
Γ⇒∆,ϕ∧ψ
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Back to cumulativity

Consider (roughly) X ⇌ X ′ iff (⊢X⇔⊢X ′) and X̂ the least
representative of the corresponding equivalence class

Define S∧ as the (And)-closure of S

If (X̂ c)∧ = X̂ c then

Conjunctive Cautions Monotony holds;
LA turns into MSPL.
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Epilog

A non-deterministic multivalued calculus with four truth values

Describes how an agent evaluates a compound formula from its
elementary attitudes

A generic ’classical’ calculus SLA

Describes how an agent admits a compound formula from the
admissibility of its subformulas

Since SLA relies on the only distinction between designated and
non-designated values, it amounts to the common behaviour of all the
agents

horizon: investigate more accurately the role of MSPL in
argumentation

Far horizon: relating the reasoning of an agent with strategies of
construction of new arguments

Complementary direction: how additional constraints on X can
determinize the connectors
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