X-logics based multivalued reasoning for dialogical agents (ongoing work)

Vincent Risch
Aix-Marseille Univ., LSIS - UMR CNRS 7296

Madeira Worshop on Belief Revision and Argumentation, 2015

Motivations

A formal attempt around eristic argumentation:

- human disputes (either explicitely or implicitely) relies on rethoric techniques;

Motivations

A formal attempt around eristic argumentation:

- human disputes (either explicitely or implicitely) relies on rethoric techniques;
- one goal of these techniques, beyond checking the correctness of the reasoning of the speakers, is to help avoiding revision as long as possible;

Motivations

A formal attempt around eristic argumentation:

- human disputes (either explicitely or implicitely) relies on rethoric techniques;
- one goal of these techniques, beyond checking the correctness of the reasoning of the speakers, is to help avoiding revision as long as possible;
- e.g. greek sophists, Socrate, scholastic disputia, Thomas Aquina, Schopenhauer, modern political disputes...

Motivations

A formal attempt around eristic argumentation:

- human disputes (either explicitely or implicitely) relies on rethoric techniques;
- one goal of these techniques, beyond checking the correctness of the reasoning of the speakers, is to help avoiding revision as long as possible;
- e.g. greek sophists, Socrate, scholastic disputia, Thomas Aquina, Schopenhauer, modern political disputes...
- these techniques:

Motivations

A formal attempt around eristic argumentation:

- human disputes (either explicitely or implicitely) relies on rethoric techniques;
- one goal of these techniques, beyond checking the correctness of the reasoning of the speakers, is to help avoiding revision as long as possible;
- e.g. greek sophists, Socrate, scholastic disputia, Thomas Aquina, Schopenhauer, modern political disputes...
- these techniques :
- assume dialogical agents;

Motivations

A formal attempt around eristic argumentation:

- human disputes (either explicitely or implicitely) relies on rethoric techniques;
- one goal of these techniques, beyond checking the correctness of the reasoning of the speakers, is to help avoiding revision as long as possible;
- e.g. greek sophists, Socrate, scholastic disputia, Thomas Aquina, Schopenhauer, modern political disputes...
- these techniques :
- assume dialogical agents;
- aim to represent the mechanisms of a dispute;

Motivations

A formal attempt around eristic argumentation:

- human disputes (either explicitely or implicitely) relies on rethoric techniques;
- one goal of these techniques, beyond checking the correctness of the reasoning of the speakers, is to help avoiding revision as long as possible;
- e.g. greek sophists, Socrate, scholastic disputia, Thomas Aquina, Schopenhauer, modern political disputes...
- these techniques :
- assume dialogical agents;
- aim to represent the mechanisms of a dispute;
- aim to achieve reasoning on arguments;

Motivations

A formal attempt around eristic argumentation:

- human disputes (either explicitely or implicitely) relies on rethoric techniques;
- one goal of these techniques, beyond checking the correctness of the reasoning of the speakers, is to help avoiding revision as long as possible;
- e.g. greek sophists, Socrate, scholastic disputia, Thomas Aquina, Schopenhauer, modern political disputes...
- these techniques :
- assume dialogical agents;
- aim to represent the mechanisms of a dispute;
- aim to achieve reasoning on arguments;
- One of our far(!) ideal(!!) goal : simulation of strategies for the 'game' of argumentation

Outline

(1) X-logics
(2) Their use in the context of a dialogical framework
(3) Nmatrices, Nsequents
(3) Transformation into classical sequents
(5) $L A$, logic of attitudes
(0) Links with MSPL (Avron et AI.)

- Epilog

Aim : attempt for defining a dialogical framework in which two 'agents' can achieve 'some' reasoning on their arguments.

X-logics [Siegel, Forget, 96]

Definition

- Classical Inference: $K \vdash f$ iff $\overline{K \cup\{f\}}=\bar{K}$

X-logics [Siegel, Forget, 96]

Definition

- Classical Inference: $K \vdash f$ iff $\overline{K \cup\{f\}}=\bar{K}$
- Generalisation : $K \vdash_{X} f$ iff $\overline{K \cup\{f\}} \cap X=\bar{K} \cap X$

X-logics [Siegel, Forget, 96]

Definition

- Classical Inference: $K \vdash f$ iff $\overline{K \cup\{f\}}=\bar{K}$
- Generalisation : $K \vdash_{X} f$ iff $\overline{K \cup\{f\}} \cap X=\bar{K} \cap X$

Theorem

$$
\begin{array}{rcl}
K \vdash_{x} f & \text { iff } & \overline{K \cup\{f\}} \cap X \subseteq \bar{K} \\
& \text { i.e. } & (\forall x \in X)(K \wedge f \vdash x \Rightarrow K \vdash x)
\end{array}
$$

X-logics [Siegel, Forget, 96]

Definition

- Classical Inference: $K \vdash f$ iff $\overline{K \cup\{f\}}=\bar{K}$
- Generalisation : $K \vdash_{X} f$ iff $\overline{K \cup\{f\}} \cap X=\bar{K} \cap X$

Theorem

$$
\begin{array}{rcl}
K \vdash_{x} f & \text { iff } & \overline{K \cup\{f\}} \cap X \subseteq \bar{K} \\
& \text { i.e. } & (\forall x \in X)(K \wedge f \vdash x \Rightarrow K \vdash x)
\end{array}
$$

Vocabulary
f is compatible with K regarding X iff $K \vdash_{x} f$, incompatible otherwise.

X-logics

Properties

X-logics

Properties

- (nonmonotonicity) $K \vdash_{X} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$

X-logics

Properties

- (nonmonotonicity) $K \vdash_{x} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$
- (supraclassicity) $K \vdash f \Rightarrow K \vdash{ }_{x} f$

X-logics

Properties

- (nonmonotonicity) $K \vdash_{x} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$
- (supraclassicity) $K \vdash f \Rightarrow K \vdash_{X} f$
- (paraconsistancy) both a formula and its negation can be compatible with K regarding X (resp. incompatibles)

X-logics

Properties

- (nonmonotonicity) $K \vdash_{x} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$
- (supraclassicity) $K \vdash f \Rightarrow K \vdash_{X} f$
- (paraconsistancy) both a formula and its negation can be compatible with K regarding X (resp. incompatibles)
- (cumulativity) If $\overline{X^{c}}=X^{c}$ then \vdash_{x} is cumulative

X-logics

Properties

- (nonmonotonicity) $K \vdash_{x} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$
- (supraclassicity) $K \vdash f \Rightarrow K \vdash_{x} f$
- (paraconsistancy) both a formula and its negation can be compatible with K regarding X (resp. incompatibles)
- (cumulativity) If $\overline{X^{c}}=X^{c}$ then \vdash_{x} is cumulative
- (classical reasoning) If $\bar{X}=X$ then \vdash_{x} is \vdash

X-logics

Properties

- (nonmonotonicity) $K \vdash_{x} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$
- (supraclassicity) $K \vdash f \Rightarrow K \vdash_{x} f$
- (paraconsistancy) both a formula and its negation can be compatible with K regarding X (resp. incompatibles)
- (cumulativity) If $\overline{X^{c}}=X^{c}$ then \vdash_{x} is cumulative
- (classical reasoning) If $\bar{X}=X$ then \vdash_{x} is \vdash

Example

X-logics

Properties

- (nonmonotonicity) $K \vdash_{x} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$
- (supraclassicity) $K \vdash f \Rightarrow K \vdash_{x} f$
- (paraconsistancy) both a formula and its negation can be compatible with K regarding X (resp. incompatibles)
- (cumulativity) If $\overline{X^{c}}=X^{c}$ then \vdash_{x} is cumulative
- (classical reasoning) If $\bar{X}=X$ then \vdash_{x} is \vdash

Example

- $\{a\} \vdash_{\{\perp\}} b \quad$ and $\quad\{a, \neg b\} \nvdash\{\perp\} b$

X-logics

Properties

- (nonmonotonicity) $K \vdash_{x} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$
- (supraclassicity) $K \vdash f \Rightarrow K \vdash_{x} f$
- (paraconsistancy) both a formula and its negation can be compatible with K regarding X (resp. incompatibles)
- (cumulativity) If $\overline{X^{c}}=X^{c}$ then \vdash_{x} is cumulative
- (classical reasoning) If $\bar{X}=X$ then \vdash_{x} is \vdash

Example

- $\{a\} \vdash_{\{\perp\}} b \quad$ and $\quad\{a, \neg b\} \nvdash\{\perp\} b$
- $\{b\} \vdash_{\{\perp\}} a \wedge b \quad$ and $\quad\{b\} \vdash_{\{\perp\}} \neg(a \wedge b)$

X-logics

Properties

- (nonmonotonicity) $K \vdash_{x} f$ does not involve $K \cup K^{\prime} \vdash_{x} f$
- (supraclassicity) $K \vdash f \Rightarrow K \vdash_{X} f$
- (paraconsistancy) both a formula and its negation can be compatible with K regarding X (resp. incompatibles)
- (cumulativity) If $\overline{X^{c}}=X^{c}$ then \vdash_{x} is cumulative
- (classical reasoning) If $\bar{X}=X$ then \vdash_{x} is \vdash

Example

- $\{a\} \vdash_{\{\perp\}} b \quad$ and $\quad\{a, \neg b\} \nvdash_{\{\perp\}} b$
- $\{b\} \vdash_{\{\perp\}} a \wedge b \quad$ and $\quad\{b\} \vdash_{\{\perp\}} \neg(a \wedge b)$
- $\{b\} \nvdash_{\{\perp, a, \neg a\}} a \wedge b \quad$ and $\quad\{b\} \nvdash_{\{\perp, a, \neg a\}} \neg(a \wedge b)$

Why X-logics for argumentation?

- they correspond to permissive inference relations (Bochman);
- as such, they caracterize a broad family of supra-classical relations;
- travel among relations via $2^{\mathcal{L}}$;
- the inner structure of X allows to construct different kind of logics, hence different kinds of agents;
- provide parts of the underlying langage with a "logical" status;
- also(!): among the different X s, try to get fragments of lower complexity...

Agents and attitudes

Definition

- An agent is a couple $[K, X]$, with K a consistant set of formulas, and X a set of formulas containing \perp. The set of all agents is written \mathcal{A}.
- a formula f is admissible by an agent $[K, X]$ iff this formula is compatible with K regarding X.

Attitudes

Answers and arguments

Definition

- An answer of the agent $\Phi=[K, X]$ to a set F is a set A composed both of formulas of K and of negated formulas of X, and such that F is incompatible with K regarding X.
- An argument α given by the agent $[K, X]$ in the presence of a formula C is a couple $\langle S, \neg C\rangle$ such that S is an answer to $C . S$ and $\neg C$ are respectively the support and the conclusion of the argument.

Definition

Given α et β two arguments, and $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq \operatorname{supp}(\beta)$:

- α attacks β iff concl $(\alpha)=\neg\left(s_{1} \wedge \cdots \wedge s_{n}\right)$
- α defends β iff $\operatorname{concl}(\alpha)=s_{1} \wedge \cdots \wedge s_{n}$

Example: the deafs dialogue

1: "You are rigid, be flexible"
2: "No. YOU are lax, be thorough"

Example: the deafs dialogue

1: "You are rigid, be flexible"
2: "No. YOU are lax, be thorough"

- Consider $\left[K_{1}, X_{1}\right]$ and $\left[K_{2}, X_{2}\right]$ with

$$
\begin{aligned}
& K_{1}=\{\text { Flexible } \Rightarrow \neg \text { Lax, } \neg \text { Rigid } \Rightarrow \text { Flexible }\} \\
& X_{1}=\{\text { Rigid }\} \\
& K_{2}=\{\text { Thorough } \Rightarrow \neg \text { Rigid }, \neg \text { Lax } \Rightarrow \text { Thorough }\} \\
& X_{2}=\{\text { Lax }\}
\end{aligned}
$$

Example: the deafs dialogue

1: "You are rigid, be flexible"
2: "No. YOU are lax, be thorough"

- Consider $\left[K_{1}, X_{1}\right]$ and $\left[K_{2}, X_{2}\right]$ with

$$
\begin{aligned}
& K_{1}=\{\text { Flexible } \Rightarrow \neg \text { Lax, } \neg \text { Rigid } \Rightarrow \text { Flexible }\} \\
& X_{1}=\{\text { Rigid }\} \\
& K_{2}=\{\text { Thorough } \Rightarrow \neg \text { Rigid, } \neg \text { Lax } \Rightarrow \text { Thorough }\} \\
& X_{2}=\{\text { Lax }\}
\end{aligned}
$$

- Answer of 2 to Rigid is $A=\{\neg \operatorname{Lax}\} \cup K_{2}$ (with $K_{2} \nvdash\{\perp$, Lax $\}$ Rigid)

Example: the deafs dialogue

1: "You are rigid, be flexible"
2: "No. YOU are lax, be thorough"

- Consider $\left[K_{1}, X_{1}\right]$ and $\left[K_{2}, X_{2}\right.$] with

$$
\begin{aligned}
& K_{1}=\{\text { Flexible } \Rightarrow \neg \text { Lax, } \neg \text { Rigid } \Rightarrow \text { Flexible }\} \\
& X_{1}=\{\text { Rigid }\} \\
& K_{2}=\{\text { Thorough } \Rightarrow \neg \text { Rigid, } \neg \text { Lax } \Rightarrow \text { Thorough }\} \\
& X_{2}=\{\text { Lax }\}
\end{aligned}
$$

- Answer of 2 to Rigid is $A=\{\neg L a x\} \cup K_{2}$ (with $K_{2} \nvdash\{\perp$, Lax $\}$ Rigid)
- Counter-argument from 2 against Rigid: $\langle A, \neg$ Rigid \rangle, which deductively amounts to: $\langle A$, Thorough \rangle

Arguments and attitudes

Properties
If $[K, X]$ is

- against a subset of $\operatorname{supp}(\alpha)$, it can construct at least one argument attacking α;
- for a subset of $\operatorname{supp}(\alpha)$, it can construct at least one argument defending α;
- puzzled by a subset of $\operatorname{supp}(\alpha)$, it can construct at least one argument both attacking and defending α;
- neutral about a subset of the support of $\operatorname{supp}(\alpha)$, then it has no argument to give about α.

Reasoning about attitudes...

Properties

- $[K, X]$ is for f iff it is against $\neg f$,
- $[K, X]$ is neutral about f iff it is neutral about $\neg f$,
- $[K, X]$ is puzzled about f iff it is puzzled about $\neg f$,
- $[K, X]$ is for the tautologies,
- $[K, X]$ is against the contradictions.

If (for instance) $[K, X]$ is for f, and for g, which attitude will it be able to adopt regarding f and g, f or $g \ldots$?

Example: combining attitudes

- Consider $[K, X]$, with
$K=$ Inflation $\Rightarrow \neg$ IncreasingPurchasingPower, IncreasingSalaries \Rightarrow IncreasingPurchasingPower,
FixingBasicPrices \Rightarrow IncreasinPurchasingPower, IncreasingSalaries \wedge FixingBasicPrices \Rightarrow Inflation $\}$
$X=\{\neg$ IncreasingSalaries, \neg FixingBasicPrices $\}$

Example: combining attitudes

- Consider $[K, X]$, with

$$
\begin{aligned}
K= & \{\text { Inflation } \Rightarrow \neg \text { IncreasingPurchasingPower, } \\
& \text { IncreasingSalaries } \Rightarrow \text { IncreasingPurchasingPower, } \\
& \text { FixingBasicPrices } \Rightarrow \text { IncreasinPurchasingPower, } \\
& \text { IncreasingSalaries } \wedge \text { FixingBasicPrices } \Rightarrow \text { Inflation }\} \\
X= & \{\neg \text { IncreasingSalaries, } \neg \text { FixingBasicPrices }\}
\end{aligned}
$$

- K is both for IncreasingSalaries and for FixingBasicPrices

Example: combining attitudes

- Consider $[K, X]$, with

$$
\begin{aligned}
K= & \{\text { Inflation } \Rightarrow \neg \text { IncreasingPurchasingPower, } \\
& \text { IncreasingSalaries } \Rightarrow \text { IncreasingPurchasingPower, } \\
& \text { FixingBasicPrices } \Rightarrow \text { IncreasinPurchasingPower, } \\
& \text { IncreasingSalaries } \wedge \text { FixingBasicPrices } \Rightarrow \text { Inflation }\} \\
X= & \{\neg \text { IncreasingSalaries, } \neg \text { FixingBasicPrices }\}
\end{aligned}
$$

- K is both for IncreasingSalaries and for FixingBasicPrices
- K is against IncreasingSalaries \wedge FixingBasicPrices

Valuation

Consider the valuation

$$
v_{4}^{\vdash x}: \mathcal{A} \times \mathcal{P} \longrightarrow \mathcal{F} \mathcal{O U R}
$$

such that $\forall A \in \mathcal{A}, \forall p \in \mathcal{P}$,

$$
\begin{array}{lll}
v_{4}^{L-x}(A, p)=1 & \text { iff } & A \text { is for } p \\
v_{4}^{L-x}(A, p)=T & \text { iff } & A \text { is neutral regarding } p \\
v_{4}^{L-x}(A, p)=\perp & \text { iff } & A \text { is puzzled regarding } p \\
v_{4}^{L-x}(A, p)=0 & \text { iff } & A \text { is against } p
\end{array}
$$

$v_{4}^{\vdash x}$ is not functional... Two choices:

Valuation

Consider the valuation

$$
v_{4}^{\vdash x}: \mathcal{A} \times \mathcal{P} \longrightarrow \mathcal{F O U R}
$$

such that $\forall A \in \mathcal{A}, \forall p \in \mathcal{P}$,

$$
\begin{array}{lll}
v_{4}^{\vdash-}(A, p)=1 & \text { iff } & A \text { is for } p \\
v_{4}^{\vdash-x}(A, p)=T & \text { iff } & A \text { is neutral regarding } p \\
v_{4}^{\vdash-x}(A, p)=\perp & \text { iff } & A \text { is puzzled regarding } p \\
v_{4}^{\vdash-x}(A, p)=0 & \text { iff } & A \text { is against } p
\end{array}
$$

$v_{4}^{\vdash-x}$ is not functional... Two choices:
(1) adding constraints to X in order to determinize in an unique way the admissibility associated with the different logical combinations of two formulas;

Valuation

Consider the valuation

$$
v_{4}^{\vdash x}: \mathcal{A} \times \mathcal{P} \longrightarrow \mathcal{F O U R}
$$

such that $\forall A \in \mathcal{A}, \forall p \in \mathcal{P}$,

$$
\begin{array}{lll}
v_{4}^{\vdash-}(A, p)=1 & \text { iff } & A \text { is for } p \\
v_{4}^{\vdash-x}(A, p)=T & \text { iff } & A \text { is neutral regarding } p \\
v_{4}^{\vdash x}(A, p)=\perp & \text { iff } & A \text { is puzzled regarding } p \\
v_{4}^{\vdash x}(A, p)=0 & \text { iff } & A \text { is against } p
\end{array}
$$

$v_{4}^{\vdash-x}$ is not functional... Two choices:
(1) adding constraints to X in order to determinize in an unique way the admissibility associated with the different logical combinations of two formulas;
(2) extending our valuation to sets of truth values \rightarrow non-deterministic multi-valued logics

Nmatrices [Avron et AI.]

The Nmatrice $\mathcal{M}_{L A}$ associated to $\mathcal{F O U \mathcal { O }}$ is a triple $\mathcal{M}=\langle\mathcal{V}, \mathcal{D}, \mathcal{O}\rangle$ with
(1) $\mathcal{V}=\{O, \perp, \top, 1\}$, set of truth values;
(2) $\mathcal{D}=\{1, \top\}$, set of designated valued,
(3) Non-designated values: $\mathcal{N}=\mathcal{V} \backslash \mathcal{D}$;
(9) $\mathcal{O}=\{\neg, \vee, \wedge\}$, set of operators whose behaviour is described by the corresponding truth tables:

α	$\neg \alpha$
1	$\{0\}$
\top	$\{\top\}$
\perp	$\{\perp\}$
0	$\{1\}$

$\alpha \wedge \beta$	1	\top	\perp	0
1	$\{1, \top, \perp, 0\}$	$\{\top, 0\}$	$\{\perp, 0\}$	$\{0\}$
\top	$\{\top, 0\}$	$\{\top, 0\}$	$\{0\}$	$\{0\}$
\perp	$\{\perp, 0\}$	$\{0\}$	$\{\perp, 0\}$	$\{0\}$
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$

$\alpha \vee \beta$	1	\top	\perp	0
1	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$
\top	$\{1\}$	$\{1, \top\}$	$\{1\}$	$\{1, \top\}$
\perp	$\{1\}$	$\{1\}$	$\{1, \perp\}$	$\{\perp, 1\}$
0	$\{1\}$	$\{1, \top\}$	$\{1, \perp\}$	$\{1, \top, \perp, 0\}$

Nsequent

Multivalued Sequent

- Sequent in a matrix $\mathcal{M}=$ set of signed formulas
- The classical sequent $\Gamma \Rightarrow \Delta$ is interpreted by $\{0: \Gamma\} \cup\{1: \Delta\}$ où $\mathcal{V}=\{0,1\}$ et $\mathcal{D}=\{1\}$
- Conventions: $\mathcal{V}=\left\{t_{0}, \ldots, t_{n-1}\right\}$ (with $n \geq 2$) and $\mathcal{D}=\left\{t_{d}, \ldots, t_{n-1}\right\}($ with $d \geq 1)$

Definition

A n-sequent on a language \mathcal{L} is an expression Σ of the form
$\Gamma_{0}\left|\Gamma_{1}\right| \ldots \mid \Gamma_{n-1}$ where for every $0 \leq i \leq n-1, \Gamma_{i}$ is a finite set of formulas on \mathcal{L}.

Notation
Replace \mid by $\Rightarrow: \Gamma_{i_{1}}\left|\ldots \Gamma_{i_{r}} \Rightarrow \Gamma_{j_{1}}\right| \ldots \mid \Gamma_{j_{s}}$ where $i_{1}, \ldots, i_{r} \in \mathcal{N}$ and $j_{1}, \ldots, j_{s} \in \mathcal{D}$

Multivalued sequents for $L A$

- Axioms: any set of signed formulas of the form $\{a: \varphi \mid a \in \mathcal{V}, \varphi \in \mathcal{F}\}$
- Structural rules: weakening
- Logical rules (after simplification), e.g.:

Conjonction:

$$
\begin{aligned}
& \frac{\Omega, \perp: \varphi, 1: \varphi \quad \Omega, \perp: \psi, 1: \psi \quad \Omega, \perp: \varphi, \psi}{\Omega, \perp: \varphi \wedge \psi, 0: \varphi \wedge \psi} \\
& \frac{\Omega, 1: \varphi, \top: \varphi \quad \Omega, 1: \psi, \top: \psi \quad \Omega, \top: \varphi, \psi}{\Omega, 0: \varphi \wedge \psi, \top: \varphi \wedge \psi} \\
& \frac{\Omega, \perp: \varphi, \psi, 0: \varphi, \psi \Omega, 0: \varphi, \psi, \top: \varphi, \psi}{\Omega, 0: \varphi \wedge \psi}
\end{aligned}
$$

Transformation into Nsequents

Example:

Conjonction:

$$
\begin{gathered}
\frac{\Gamma_{\perp}, \varphi\left|\Gamma_{0} \Rightarrow \Gamma_{1}, \varphi\right| \Gamma_{\top} \quad \Gamma_{\perp}, \psi\left|\Gamma_{0} \Rightarrow \Gamma_{1}, \psi\right| \Gamma_{\top} \quad \Gamma_{\perp}, \varphi, \psi\left|\Gamma_{0} \Rightarrow \Gamma_{1}\right| \Gamma_{\top}}{\Gamma_{\perp}, \varphi \wedge \psi\left|\Gamma_{0}, \varphi \wedge \psi \Rightarrow \Gamma_{1}\right| \Gamma_{\top}} \\
\frac{\Gamma_{\perp}\left|\Gamma_{0} \Rightarrow \Gamma_{1}, \varphi\right| \Gamma_{\top}, \varphi \quad \Gamma_{\perp}\left|\Gamma_{0} \Rightarrow \Gamma_{1}, \psi\right| \Gamma_{\top}, \psi \quad \Gamma_{\perp}\left|\Gamma_{0} \Rightarrow \Gamma_{1}\right| \Gamma_{\top}, \varphi, \psi}{\Gamma_{\perp}\left|\Gamma_{0}, \varphi \wedge \psi \Rightarrow \Gamma_{1}\right| \Gamma_{\top}, \varphi \wedge \psi} \\
\frac{\Gamma_{\perp}, \varphi, \psi\left|\Gamma_{0}, \varphi, \psi \Rightarrow \Gamma_{1}\right| \Gamma_{\top} \quad \Gamma_{\perp}\left|\Gamma_{0, \varphi}, \psi \Rightarrow \Gamma_{1}\right| \Gamma_{\top}, \varphi, \psi}{\Gamma_{\perp}\left|\Gamma_{0}, \varphi \wedge \psi \Rightarrow \Gamma_{1}\right| \Gamma_{\top}}
\end{gathered}
$$

Expressiveness condition

- Condition(Avron, Ben-naim, Konikowska, 07): a n-sequent calculus can be translated into a two-sided sequent calculus only if the underlying langage is sufficiently expressive for the semantics induced by the Nmatrix \mathcal{M}
- Intuition: for any valuation of an initial formula, by introducing new formulas compounded only from the initial formula with any connector, one can still adress any subsequent valuation of these new formulas either in \mathcal{N} or \mathcal{D}
- This ensures (in a strong combinatoric way) the partition of any multi-valued sequent into a two-valued sequent

partition sequence

$\Sigma=\Gamma_{1}\left|\Gamma_{2}\right| \ldots \mid \Gamma_{n}$ a n-sequent de \mathcal{L}.
Definition (Avron, Ben-naim, Konikowska, 07)
A partition sequence for Σ is a tuple $\pi=\left\langle\pi_{1}, \ldots, \pi_{n}\right\rangle$ such that for $1 \leq i \leq n, \pi_{i}$ is a partition of Γ_{i} of the form

$$
\pi_{i}=\left\{\Gamma_{i j}^{\prime} \mid 1 \leq j \leq l_{i}\right\} \cup\left\{\Gamma_{i k}^{\prime \prime} \mid 1 \leq k \leq m_{i}\right\}
$$

Nsequents and classical sequents

For a partition sequence π and for all $1 \leq i \leq n$, define:

$$
\begin{gathered}
\Delta_{i}^{\prime}=\bigcup\left\{A_{j}^{i}\left(\Gamma_{i j}^{\prime}\right) \mid 1 \leq j \leq l_{i}\right\} \\
\Delta_{i}^{\prime \prime}=\bigcup\left\{B_{k}^{i}\left(\Gamma_{i k}^{\prime \prime}\right) \mid 1 \leq k \leq m_{i}\right\} \\
\Sigma_{\pi}=\Delta_{1}^{\prime}, \Delta_{2}^{\prime}, \ldots, \Delta_{n}^{\prime} \Rightarrow \Delta_{1}^{\prime \prime}, \Delta_{2}^{\prime \prime}, \ldots, \Delta_{n}^{\prime \prime}
\end{gathered}
$$

where $A_{j}^{i}\left(\Gamma_{i j}^{\prime}\right)=\left\{A_{j}^{i} \varphi \mid \varphi \in \Gamma_{i j}^{\prime}\right\}$ and $B_{k}^{i}\left(\Gamma_{i k}^{\prime \prime}\right)$ is defined in the same way. Let Π be the set of all partition sequences of Σ, the set of two-sided sequents generated by $\operatorname{TWO}(\Sigma)=\left\{\Sigma_{\pi} \mid \pi \in \Pi\right\}$

Theorem (Avron, Ben-naim, Konikowska, 07)
If \mathcal{L} is sufficiently expressive langage for every n-sequent
$\Sigma=\Gamma_{1}\left|\Gamma_{2}\right| \ldots \mid \Gamma_{n}$, and any valuation v of formulas of $\mathcal{L}, v \models \Sigma$ iff $v \vDash \Sigma^{\prime}$ for every $\Sigma^{\prime} \in T W O(\Sigma)$.

Preliminary results

Theorem

For every agent A and every formula α :

$$
\begin{aligned}
& v_{4}^{\vdash x}(A, \alpha)=1 \text { iff } v_{4}^{\vdash x}(A, \alpha) \in \mathcal{D} \text { and } v_{4}^{\vdash x}(A, \neg \alpha) \in \mathcal{N} \\
& v_{4}^{-1}(A, \alpha)=T \text { iff } v_{4}^{\vdash x}(A, \alpha) \in \mathcal{D} \text { and } v_{4}^{\vdash-x}(A, \neg \alpha) \in \mathcal{D} \\
& v_{4}^{-x}(A, \alpha)=\perp \text { iff } v_{4}^{1-x}(A, \alpha) \in \mathcal{N} \text { and } v_{4}^{-x}(A, \neg \alpha) \in \mathcal{N} \\
& v_{4}^{-x}(A, \alpha)=0 \text { iff } v_{4}^{r-x}(A, \alpha) \in \mathcal{N} \text { and } v_{4}^{4 x}(A, \neg \alpha) \in \mathcal{D}
\end{aligned}
$$

\rightarrow ensures the two-sided partition of every sequent $\Sigma=\Gamma_{1}\left|\Gamma_{2}\right| \ldots \mid \Gamma_{n}$

Calculus $\mathcal{S}_{L A}$

Axioms: $\quad \varphi \Rightarrow \varphi$ for every formula φ

Rules:

$$
\begin{array}{cc}
\frac{\Gamma \Rightarrow \Delta, \varphi, \psi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi} & \frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \wedge \psi \Rightarrow \Delta} \\
\frac{\Gamma, \neg \varphi, \neg \psi \Rightarrow \Delta}{\Gamma, \neg(\varphi \vee \psi) \Rightarrow \Delta} & \frac{\Gamma \Rightarrow \Delta, \neg \varphi, \neg \psi}{\Gamma \Rightarrow \Delta, \neg(\varphi \wedge \psi)} \\
\frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \neg \neg \varphi} & \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \neg \neg \varphi \Rightarrow \Delta}
\end{array}
$$

- $\mathcal{S}_{L A}$ gets only one of the two rules for disjonction and only one of the two rules for conjonction
- None of the classical rules for negation
- The calculus is symetrical

MSPL (Avron, Ben-naim, Konikowska, 07)

Given a set S of sources of information and a processor P

- each source $s \in S$ can tell if a formula ϕ is true, if it is false or if it has no information about ϕ
- The processor P collects the formulas and combines them from the informations given by the sources :
- it has information that ϕ is true but no information that ϕ is false
- it has information that ϕ is false but no information that ϕ is true
- it has both informations that ϕ is true and that ϕ is false
- it has no information on ϕ at all

MSPL (Avron, Ben-naim, Konikowska, 07)

The Nmatrice MSPL associated to $\mathcal{F O U R}$ is $\mathcal{M}=\langle\mathcal{V}, \mathcal{D}, \mathcal{O}\rangle$ with
(1) $\mathcal{V}=\{O, \perp, \top, 1\}$, set of truth values;
(2) $\mathcal{D}=\{1, \top\}$, the designated values,
(3) $\mathcal{N}=\mathcal{V} \backslash \mathcal{D}$;
(1) $\mathcal{O}=\{\neg, \vee, \wedge\}$ the set of operators described by the following truth-tables:

α	$\neg \alpha$
1	$\{0\}$
\top	$\{\top\}$
\perp	$\{\perp\}$
0	$\{1\}$

$\alpha \wedge \beta$	1	\top	\perp	0
1	$\{1, \top\}$	$\{\top\}$	$\{\perp, 0\}$	$\{0\}$
\top	$\{\top\}$	$\{\top\}$	$\{0\}$	$\{0\}$
\perp	$\{\perp, 0\}$	$\{0\}$	$\{\perp, 0\}$	$\{0\}$
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$

$\alpha \vee \beta$	1	\top	\perp	0
1	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$
\top	$\{1\}$	$\{\top\}$	$\{1\}$	$\{丁\}$
\perp	$\{1\}$	$\{1\}$	$\{1, \perp\}$	$\{\perp, 1\}$
0	$\{1\}$	$\{\top\}$	$\{1, \perp\}$	$\{\top, 0\}$

LA vs. MSPL

LA

$$
\begin{array}{cc}
\frac{\Gamma \Rightarrow \Delta, \varphi, \psi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi} & \frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \wedge \psi \Rightarrow \Delta} \\
\frac{\Gamma, \neg \varphi, \neg \psi \Rightarrow \Delta}{\Gamma, \neg(\varphi \vee \psi) \Rightarrow \Delta} & \frac{\Gamma \Rightarrow \Delta, \neg \varphi, \neg \psi}{\Gamma \Rightarrow \Delta, \neg(\varphi \wedge \psi)} \\
\frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \neg \neg \varphi} & \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \neg \neg \varphi \Rightarrow \Delta}
\end{array}
$$

LA vs. MSPL

LA

$$
\begin{array}{cc}
\frac{\Gamma \Rightarrow \Delta, \varphi, \psi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi} & \Gamma, \varphi, \psi \Rightarrow \Delta \\
\frac{\Gamma, \neg \varphi, \neg \psi \Rightarrow \Delta}{\Gamma, \neg(\varphi \vee \psi) \Rightarrow \Delta} & \frac{\Gamma \Rightarrow \Delta, \neg \varphi, \neg \psi}{\Gamma \Rightarrow \Delta, \neg(\varphi \wedge \psi)} \\
\frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \neg \neg \varphi} & \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \neg \neg \varphi \Rightarrow \Delta}
\end{array}
$$

MSPL

$$
=L A+\quad \frac{\Gamma \Rightarrow \Delta \neg \varphi \quad \Gamma \Rightarrow \Delta \neg \psi}{\Gamma \Rightarrow \Delta, \neg(\varphi \vee \psi)} \quad \frac{\Gamma \Rightarrow \Delta \varphi \quad \Gamma \Rightarrow \Delta \psi}{\Gamma \Rightarrow \Delta, \varphi \wedge \psi}
$$

Back to cumulativity

- Consider (roughly) $X \leftrightharpoons X^{\prime}$ iff $\left(\vdash_{X} \Leftrightarrow \vdash x^{\prime}\right)$ and \hat{X} the least representative of the corresponding equivalence class
- Define S^{\wedge} as the (And)-closure of S
- If $\left(\hat{X}^{c}\right)^{\wedge}=\hat{X}^{c}$ then
- Conjunctive Cautions Monotony holds;
- LA turns into MSPL.

Epilog

- A non-deterministic multivalued calculus with four truth values
- Describes how an agent evaluates a compound formula from its elementary attitudes
- A generic 'classical' calculus $\mathcal{S}_{L A}$
- Describes how an agent admits a compound formula from the admissibility of its subformulas
- Since $\mathcal{S}_{L A}$ relies on the only distinction between designated and non-designated values, it amounts to the common behaviour of all the agents
- horizon: investigate more accurately the role of MSPL in argumentation
- Far horizon: relating the reasoning of an agent with strategies of construction of new arguments
- Complementary direction: how additional constraints on X can determinize the connectors

Acknowledgements

We thank Geoffroy Aubry for some previous work on attitudes, and Michel Klein for his collaboration on the LA calculus.

References

[1] Aubry G., Risch V., 2005, Toward a Logical Tool for Generating New Arguments in an Argumentation-Based Framework. ICTAI 2005, p. 599-603.
[2] Aubry G., Risch V., 2006, Managing Deceitful Arguments with X-logics. ICTAI 2006, p. 216-219.
[3] Avron A., Ben-Naim J., Konikowska B., 2007, Cut-Free Ordinary Sequent Calculi for Logics Having Generalized Finite-Valued Semantics. Logica Universalis 1 (2007), p. 41-70.
[4] Forget L., Risch V., Siegel P., 2001, Preferential Logics Are X-logics. Journal of Logic and Computation, Vol. 11, No. 1, february 2001, p. 71-83.

